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The reflectivity for neutrons of a plane slab crystal is calculated in the transmission ease when the 
crystal is placed between two Soller collimators. The calculations indicate that the crystal reflec- 
tivity, as well as the secondary extinction coefficient, depends significantly on the angular resolution 
of the collimators. Curves are given for the extinction of the crystal with different crystal and 
collimator parameters. 

1. I n t r o d u c t i o n  

The interaction between a beam of thermal neutrons 
and a single free nucleus can result in either absorption 
or isotropic scattering processes (in the centre of mass 
system). 

If several equal nuclei are present, arranged in a 
lattice, interference will occur between the scattered 
beams. The only directions around which the elastic 
scattered beams have non-vanishing intensities are 
given by the Bragg condition, 

nA=2d sin 0,  (1.1) 

n being a positive integer called the scattering order, 
A the neutron wavelength, d the lattice spacing, and 
0 the Bragg angle (20 the angle between the direct 
and the scattered beams). 

The ratio between the number of neutrons with 
wavelength A in the elastic scattered beam and in the 
incoming beam is called the reflectivity. This is a 
function of two independent variables, such as ~t 
and the incoming direction, or 0 and the crystal setting. 
Further the reflectivity depends on the order of 
reflexion, crystal shape, etc. The calculations in this 
article deal with the transmission or Laue case for 
a crystal having the form of a plane parallel slab. 
In the transmission case the neutrons leave the crystal 
from the side opposite to that  of their arrival. This 
case has previously been dealt with by Zachariasen 
(1945) for X-ray diffraction, by B~con & Lowde (1948) 
and by Holm (1955) for neutron diffraction. There 
appear to be some discrepancies in the calculations by 
Bacon & Lowde and Holm. Some of the calculations 
made by Holm, which we permit ourself to criticize, 
have been adopted by other investigators (Haas & 
Shore, 1959; Hautecler & Pollak, 1958). 

In § 2 some introductory remarks on the problem 
of extinction are made. The reflectivity of a plane 
slab crystal in the transmission case is calculated in 
§ 3 as a function of the direction of the incident 
neutrons. Though such calculations have been pub- 

lished earlier (Bacon & Lowde, 1948; Holm, 1955), 
it was found reasonable to go into some detail and 
point out the discrepancies mentioned. The total or 
integrated reflectivity evaluated by the authors cited 
is obtained by integration of the reflectivity calculated 
in § 3. In relation to experimental situations this 
integrated reflectivity would be measured either by 
rotating the crystal in a narrow incoming neutron 
beam or by keeping the crystal fixed in a wide open 
beam. By narrow and wide open beams is meant 
beams with angular spreads much less and much 
higher respectively than the mosaic spread of the 
crystal. In neutron diffraction experiments the angular 
spread of the neutron beam is often comparable to 
the mosaic spread. In this case the integrated reflec- 
tivity and also the secondary extinction become 
dependent on the angular spread of the collimation. 
We have investigated this dependence in the special 
case with two Soller collimators placed in front of 
and behind a crystal in a fixed position. This is described 
in §4. 

2. E x t i n c t i o n  

An infinitesimal volume element ~ V of a perfect single 
crystal (crystallite) irradiated in a neutron beam flux 
I neutrons cm -2 sec -1 will scatter IQ(5 V neutrons sec -1, 
provided the number of atoms in the volume element 
is so large that  the coherence is sharper than the 
angular spread of the neutron beam. The crystallo- 
graphic quantity Q, evaluated by Zachariasen (1945), 
is given by 

Q = ~SN~F2/sin 20, (2.1) 

Nc being the number of unit cells per unit volume in 
the crystal and F the structure factor, i.e. 

F = .~ bje-w exp [2:~i(k- k0)" rj] , (2.2) 
/ 

where the summation is taken over all atoms (at 
positions r~) in the unit cell. k0 and k are the incident 
and scattered wave vectors respectively and e -W is 
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the square root of the Debye-Waller factor originating 
from the thermal vibrations of the atoms. W has 
been evaluated, for instance, by James (1948). The 
analytical expression for W used in the following 
calculations is 

? W -  m.4k.OD~9 - -  + . (2.3) 

Here h is Planck's constant, mA is the nuclear mass, 
]c is Boltzmann's constant, 0D is the Debye temperature 
of the crystal, and x is equal to OD/T, where T is the 
absolute temperature of the crystal. ~(x) is a function 
of x defined by 

q~(x)=l I x ydy x ~ x 3 x 5 x 7 
J0 e~--Z- i - x -  ~- + 36 3600 ÷ 21~680 . . . .  

(2.4) 

If the crystal scattering the neutron beam is not 
infinitesimal in dimensions, damping of the neutron 
intensity over the crystal will take place, giving 
unequal illumination of different parts of the crystal. 
The damping due to diffraction inside a crystallite 
is called the primary extinction. 

Real single crystals are not perfect, but are assumed 
to consist of small crystallites stacked together with 
small, random, angular displacements LJ. The angular 
distribution, W(A), of the 'mosaic blocks' is normally 
assumed to have a Gaussian shape, i.e. 

1 
W(A) - ~1V(2z ) exp ( -  A2/2~7 ~) , (2.5) 

where ~7, the 'mosaic spread', is the standard deviation 
of the distribution. The validity of this assumption 
is discussed by James (1948). 

Two mosaic blocks, a distance apart  and both in 
position for Bragg reflexion, will be differently 
irradiated, the intensity being diminished from the 
first to the second block owing to diffraction in the 
first block, and possibly from absorption between 
the blocks. The part  of the intensity damping due to 
diffraction is called the secondary extinction. 

In the following calculations the actual intensity 

/ Ext.-0, abs.-0 

.-. ] ~ ~ - - ~  6,/Ext.-0, abs.~0 

~..I ~ %....--, Ext.*0,'absr0 

~-I ~ Crystalllte -~.~g-Smoothed variation 

Penetration depth t 
Fig. 1. Showing in principle how the intensi ty var ia t ion 

depends  upon  penet ra t ion  dep th  for various combinat ions  
of ext inct ion and absorption.  When  the relative damping  
of the  intensi ty  inside a crystalli te is small, the  crystal 
is said to be 'ideal imperfect ' ,  and the  smoothed  var iat ion 
gives a good approximat ion  to the  real variation. 

variation inside the crystal is approximated by a 
smoothed curve (Fig. 1), for which a differential 
equation can be set up and solved. This approximation 
is good when the intensity damping inside a crystallite 
is small compared with the total intensity variation 
in the crystal. A crystal in which this condition is 
fulfilled is known as an 'ideal imperfect crystal' .  

3. Reflect ivi ty of a plane  s lab  in the 
t r a n s m i s s i o n  case  

Fig. 2 shows the unsymmetrical transmission case for 
a plane infinite slab of thickness to. Z denotes the 
angle between the normal to the crystal surface and 
the crystal plane under consideration. The direction 
cosines of the incident beam of wave length ~t and 
the scattered beam with respect to the inward normal 
to the crystal surface are called 70 and 7H respectively, 

,4 Average orientation 

" ~ ~ 1  Crystal. 

i '  I < / ' , x  
I \\ 

Fig. 2. Transmission pa th  in a plane slab crystal. 

i.e. y0=cos (0 -Z) ,  yH=cos  (0+ Z). Through a layer 
of thickness dt, the incident beam path length is dt/~o 
and the reflected beam path length is dt/yH. 

We will assume the crystal azimuthally orientated 
in such a way that  multiple scattering does not occur; 
tha t  is neither the incident nor the diffracted beam 
can be scattered by more than one set of crystal planes. 

The fraction of the mosaic blocks in a position to 
diffract the beam (as shown in Fig. 2) is W(A)dA, 
which means that  the reflectivity per unit path length 
is 

S ( A ) d A  =- Q W ( A ) d A  . (3.1) 

If the linear absorption coefficient is denoted by #, 
the change in the incident beam intensity Po(zJ, t) 
over the layer dt at depth t is 

dPo (d, t) 

= ( _ # Po(A,t)__yo sP°(A't)--yo + S PH(A't!)dt,,H (3"2) 

the last term giving a gain in intensity from a double 
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diffracted beam. Similarly the change in the diffracted 
beam intensity PH (A, t) is 

dPH (A, t) 
= ( _  # PH(A,?~ t) sPH(A,?H t) + S Po(A,~,~t)) dr. (3.3) 

These coupled differential equations can be integrated 
and solved with the boundary conditions: PH(O)=0 
and Po(t=O)=Po(O), and the reflectivity (from now 
on termed P(O, A)) can be found to be 

_ _  ( # + S  \ PH(A, to) S exp -~ to)sinh (et0) 
P(O, A) - Po(A, O) ~,o'e 
where (3.4) 

e = V \  -d~ + 7 ~ .  ' (3.5) 
and 

= 2 + ; -G = 2 ~-0 . (3.6) 

Formula (24) of Bacon & Lowde (1948) giving the 
reflectivity for the unsymmetrical transmission case 
differs from the same quant i ty  derived in (3.4). 
The deviation is due to a misinterpretation, by these 
authors, of an earlier equation (4.21) of Zachariasen 
(1945). This lat ter  equation (4.21), giving the dif- 
ferential change in beam intensities similar to (3.2) 
and (3-3), is in fact, as stated by Zachariasen for the 
symmetrical case, i.e. ~'0= VH. This misunderstanding 
has been furthered by the existence of both V0 and VH 
in the Zachariasen formula, though in wrong positions. 
Unfortunately, a recent article by Stehr (1963) has 
been part ly based on the erroneous Bacon & Lowde 
formula. 

To simplify calculation of the reflectivity, s can be 
approximated by S/I'. This approximation is valid for 

G~ ' + ~  < 1.  (3.7) 

Here FIG < 1, and hence for crystal planes with small 
absorption to diffraction ratio or for symmetrical 
reflection (1/G = 0), 

P(O,A) 

F e x p (  - # + S  to) 
yo 

(2Sto/f)~ 
= ~-y0exp -- to .a~(--l)i+1 j=l j !  

r ( 1 = ~ exp (- #to//').2 (- l)J +I (C)J j=l -~-. exp \ -  ~ /  (3.8) 

with C = 2Qto/ ]/ ( 2 z~ ) ~ i ~ " 

Holm (1955) calculates a reflectivity for the sym- 
metrical transmission case corresponding to (3-8) for 
~'O=ZH. His result deviates from the reflectivity 
derived here, first because the linear damping co- 

efficient has been used for /~, instead of the linear 
absorption coefficient (i.e. the diffraction has been 
included in #), and secondly because the Debye-  
Waller factor has been placed in front of the whole 
expression instead of in the structure factor, where 
it actually belongs. In this way the calculations give 
too high a secondary extinction, because the Debye-  
Waller factor will in fact tend to diminish the mag- 
nitude of C. This implies further tha t  according to 
Holm the secondary extinction is independent of 
temperature, whereas our calculations give a decrease 
of the extinction with the temperature. 

4. Effect of e x p e r i m e n t a l  reso lu t ion  

I t  is necessary to take the finite resolution of the 
incoming and outgoing beams into consideration when 
comparing the calculated reflectivity with measured 
reflectivities. 

Fig. 3 shows a situation in which a white beam 
impinges on a crystal. Path  I indicates the beam from 
which neutrons with wave length tB (corresponding 
to Bragg angle OB) are reflected from mosaic blocks 
with the average orientation. Path II  indicates a beam 
reflected from mosaic blocks turned through an angle 
A from the average orientation. These reflected 
neutrons have wavelength 2 (corresponding to Bragg 
angle 0). The angle between I and II  before reflexion 
is 5 and after reflexion fl, where 

~=(O--OB)--A and f l = ~ + 2 A = ( O - O B ) + A .  (4.1) 

If the incident beam has passed through a colli- 
mator with acceptance function n,(6) and the dif- 
fracted beam has to pass through a collimator with 
acceptance function na(fl), the resolution function 

/Collimator 
2,, 

/ Crystal 
Fig. 3. Geometry  for calculation of the  exper imental  

resolution effect. 

R(O--OB) will be 

S R(0--0B) = constant,  n~(d)P(O, A)na(fl)dA 

S = constant,  ni((0-- 0B)-- A) 

xP(O, A)na((O-O~)+A)dA . (4-2) 
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We will confine ourselves to the case where the first 
and second collimators are identical Soller collimators, 
and for calculational convenience the acceptance 
function will be approximated by a Gaussian with 
standard deviation a/V2, i.e. 

n (~) = exp ( -- cp2/a 2) (4"3) 

with a=s/2L[/(ln2),  s being the width and L the 
length of the collimator and ~ the angular divergence 
from the central passage through the collimator. 
The constant in (4.2) takes account of the normaliza- 
tion of the acceptance functions. To determine absolute 
intensities it is necessary to evaluate this constant 
as performed by Sailor, Foote, Landon & Wood 
(1956) in a special case. However, when dealing with 
crystal reflectivity the constant need not be con- 
sidered. 

The acceptance function for a Soller collimator is 
in fact a triangle. The Gaussian approximation is 
discussed by Sailor et al. (1956). For the product 
of the two acceptance functions in (4.2) we find, 
in the Gaussian approximation 

n~((O--Os)--A)ng((O--OB)-k A)=ng(O-Os)n2(A) . (4.4) 

:From (4.2) and (4.4), therefore 

f R(0--0B) = constant, n2(0--0B) n2(A)P(O, A)dA . 
(4-5/ 

The integral in (4.5) is called the integrated reflectivity 
Pint(0). Using (3-8), (4-3) and (4.4) (interchanging 
integration and summation), gives 

P i n t ( O )  

co  

- / '  exp (--#to~i-')~" ( - 1 )  ~+1 (C)J 
270 ~=1 j!  

x j_ exp - A  2 + 

- -~0 exp ( -  #to~ ]P)j=l ~" ( -  1)J+l j!~/(j+4~2/a~) • 

(4.6) 

The intensity I(Os) after the second collimator is 
found by multiplying (4.5) by the incident wavelength 
distribution f(~t) and integrating over 0. n2(O--OB) is 
normally so sharply peaked that  f(2) can be approx- 
imated by the constant f(AB) and similarly Pint(0) 
by Pint(OB). Thus 

I(OB) oc Pint(OB) (4"7) 

revealing that  the intensity is approximately propor- 
tional to the integrated reflectivity (4.6), corresponding 
to the average neutron wavelength. 

5 .  D i s c u s s i o n  

I t  is often of interest in neutron diffraction ex- 
periments to minimize the extinction effect and 

possibly to correct for it. The extinction coefficient, 
Es, is defined as the ratio between the scattered 
intensity and the intensity one would get without 

5ol =o,o  

1 

1 

30 

i v-- 

2Qto 

o, ols 1'.o l'-s 
Fig. 4. The effect of the experimental resolution from two 

Soller collimators on the secondary extinction coefficient Es. 
is the mosaic spread of the crystal and a is the standard 

deviation for the collimator acceptance function divided 
by 1/2. 

extinction. The latter intensity is represented by the 
linear, first term in the sum (4.6). In our notation 
therefore E8 is equal to the ratio of Pint(0) tO the 
first term in the sum (4-6). (1-E~) is shown in Fig. 4 
(in %) as a function of C. The extinction depends 
on the experimental resolution through ~/a. Curves 
are shown for several values of ~/a. As seen from 
Fig. 4, the extinction will lie in a band. The results 
of :Bacon & Lowde and Holm correspond for a fixed 
crystal to wide open incoming and outgoing beams, 
i.e. ~/~=0.  Bacon has introduced a criterion for a 
'thin' crystal, defined as a crystal with extinction 
< 5%. Incorporating the resolution effect, this criterion 
roughly approximates to 

Qto 1V(2+4~2/~2_/ (5.1) 
~ F  < -~ 1+4~./42] • 

For decreasing values of C the integrated reflectivity 
will tend to approach the linear decrease of the first 
term in (4.6), i.e. 

Qto 
Pint(OB) > exp ( - - # t o ~ F ) -  4v12/a~. (5-2) 

c--+ o 70 V(1 + 

When C increases, the integrated intensity will reach 
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a maximum value followed by a decrease due to the 
absorption factor. 

An example of the behaviour of the integrated s 
intensity is shown in Fig. 5. The curves are reflec- 
tivities for Be (100) planes, calculated from (4.6) on 2 
a digital computer as a function of the Bragg angle. ~0_ ~ 
The specifications for the crystal and the collimators ~ 
are given in the figure. The mosaic spread for the ~° s 
crystal was determined by measuring the rocking 
curve halfwidth for the crystal in a parallel double- [~ 
reflexion set-up (Compton & Allison, 1935). ~ 2  

The reflectivity is proportional to 02 for small ~10_ 2 
values of 0. For increasing 0 the reflectivity reaches 
a plateau. This is a special property of the symmetric ~ s 
transmission (z=O) with small linear absorption 
coefficient. In  general, the factors (Flea) exp ( - #to~F) 
will perturb this plateau. A special example of this ~: 2 

kind was chosen to indicate tha t  the higher order ~0-3 
reflectivities, as expected, reach the same maximum 
value as the first order reflectivity. This would not s 
be true for reflectivities calculated from the formulas 
of Holm. 2 

The curves in Fig. 5 were used to determine higher 
order contamination for the Be 100 reflexion. The 10" 
calculated contamination was in good agreement with 
measured values (Dietrich & Als-Nielsen, 1964). s 

In the approximation (3.7) the extinction is in- 
dependent of the absorption. If (3.7) is not fulfilled, 2 
the extinction will decrease with increasing absorption 
to diffraction ratio and in the limit # > S the ex- 
tinction will vanish. 

We have confined ourselves to the transmission 
case for an infinite plane slab, because this case is the 
simplest to treat. The reflexion, or Bragg case, for 
an infinite plane slab does not give an analytical 
expression for the reflectivity as simple as the expres- 
sion in the transmission case but can be treated 
numerically. The problem of an arbitrary crystal 
shape has been investigated by Hamilton (1957) 
by use of numerical procedures. Hamilton has not 
included the experimental resolution effect, which, 
according to Fig. 4, appears to be rather significant 
for the extinction. 
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